1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
(** Copyright 2021-2025, Kakadu and contributors *)

(** SPDX-License-Identifier: LGPL-3.0-or-later *)

open Angstrom
open Ast

(* map operator for angstrom *)
let ( let+ ) = Angstrom.( >>| )

(* polymorphic variant with one constructor *)
type error = [ `Parsing_error of string ]

(* spaces and lexis *)
let is_space = function
  | ' ' | '\t' | '\n' | '\r' -> true
  | _ -> false
;;

let spaces = skip_while is_space
let spaces1 = satisfy is_space *> spaces
let lexeme p = spaces *> p

(* parser for one specific character c *)
let sym c = lexeme (char c)

(* predicate function for identifiers *)
let is_ident_start = function
  | 'a' .. 'z' | 'A' .. 'Z' | '_' | '&' -> true
  | _ -> false
;;

(* predicate functions for identifiers *)
let is_ident_char = function
  | 'a' .. 'z' | 'A' .. 'Z' | '_' | '0' .. '9' | '&' -> true
  | _ -> false
;;

let kwd s =
  let open Angstrom in
  if String.for_all is_ident_char s
  then
    lexeme
      (string s
       <* (peek_char
           >>= function
           | Some c when is_ident_char c -> fail "keyword boundary"
           | _ -> return ()))
  else lexeme (string s)
;;

(* list of key words *)
let keywords = [ "let"; "in"; "fun"; "rec"; "if"; "then"; "else"; "true"; "false" ]
let is_keyword s = List.mem s keywords

(*
   in parse case: "foo123"
   -> Ok "foo123"
   in parse case: "let"
   -> Error "keyword cannot be used as an identifier" *)
let identifier : name Angstrom.t =
  let open Angstrom in
  let raw_ident =
    let* first = satisfy is_ident_start in
    let* rest = take_while is_ident_char in
    return (String.make 1 first ^ rest)
  in
  let* name = lexeme raw_ident in
  if is_keyword name then fail "keyword cannot be used as an identifier" else return name
;;

(* consts *)
let is_digit = function
  | '0' .. '9' -> true
  | _ -> false
;;

let integer : int Angstrom.t =
  let open Angstrom in
  spaces
  *>
  let* sign = option 1 (char '-' *> return (-1)) in
  let* digits = take_while1 is_digit in
  return (sign * int_of_string digits)
;;

let const_int =
  let+ n = integer in
  Const (Int n)
;;

let const_unit = lexeme (string "()") *> return (Const Unit)

let const_bool =
  kwd "true" *> return (Const (Int 1)) <|> kwd "false" *> return (Const (Int 0))
;;

(* variables *)
let var_expr : expression Angstrom.t =
  let+ x = identifier in
  Var x
;;

let parens p = sym '(' *> p <* sym ')'

(* operations *)

let parse_op_add = sym '+' *> return OpAdd
let parse_op_sub = sym '-' *> return OpSub
let parse_op_mul = sym '*' *> return OpMul
let parse_op_div = sym '/' *> return OpDiv

let parse_cmp_op : operation_id Angstrom.t =
  let open Angstrom in
  spaces
  *> choice
       [ string "<=" *> return OpLte
       ; string ">=" *> return OpGte
       ; string ">" *> return OpGt
       ; string "<" *> return OpLt
       ; string "=" *> return OpEq
       ]
;;

(* syntax sugar for fun x y -> e
   example result: Fun ("x", Fun ("y", Fun ("z", body)))
   with args : [x, y, z]
*)
let curry_fun (args : name list) (body : expression) : expression =
  List.fold_right (fun x e -> Fun (x, e)) args body
;;

(* left-associative chain combinator
   ((1 + 2) + 3)
   with "1+2+3"
*)
let chainl1 p op =
  let open Angstrom in
  let rec loop acc =
    (let* apply = op in
     let* operand = p in
     loop (apply acc operand))
    <|> return acc
  in
  let* first = p in
  loop first
;;

(* basic grammar levels *)
let expr : expression Angstrom.t =
  fix (fun expr ->
    (* fun x y -> e *)
    let lambda =
      let args = kwd "fun" *> spaces *> many1 identifier <* spaces <* kwd "->" in
      let* xs = args in
      let+ body = expr in
      curry_fun xs body
    in
    (* basic atom without application *)
    let atom0 =
      choice [ const_unit; const_bool; const_int; lambda; var_expr; parens expr ]
    in
    (* application: f a b c
       example input: f x y
       output: App (App (Var "f", Var "x"), Var "y") *)
    let application =
      let open Angstrom in
      let* f = atom0 in
      let+ args = many1 (spaces1 *> atom0) in
      List.fold_left (fun acc a -> App (acc, a)) f args
    in
    let atom = application <|> atom0 in
    (* level * and / *)
    let mul_div =
      let op =
        let+ op = parse_op_mul <|> parse_op_div in
        fun l r -> BinOp (op, l, r)
      in
      chainl1 atom op
    in
    (* level + and - *)
    let add_sub =
      let op =
        let+ op = parse_op_add <|> parse_op_sub in
        fun l r -> BinOp (op, l, r)
      in
      chainl1 mul_div op
    in
    (* comparisons we allow only one comparison in the chain:
       a + b < c - d
    *)
    let cmp_level =
      let open Angstrom in
      let* left = add_sub in
      option
        left
        (let* op = parse_cmp_op in
         let+ right = add_sub in
         BinOp (op, left, right))
    in
    (* if ... then ... else ... *)
    let if_expr =
      let open Angstrom in
      let* cond = kwd "if" *> cmp_level in
      let* thn = kwd "then" *> expr in
      let* els =
        option
          None
          (let+ e = kwd "else" *> expr in
           Some e)
      in
      return (If (cond, thn, els))
    in
    (* let / let rec *)
    let let_expr =
      let open Angstrom in
      let* kind = kwd "let" *> spaces *> option NonRec (kwd "rec" *> return Rec) in
      let* name = identifier in
      (* function parameters: let f x y = e *)
      let* args = many identifier in
      let* bound = sym '=' *> expr in
      let value = curry_fun args bound in
      let* body_opt =
        option
          None
          (let+ body = kwd "in" *> expr in
           Some body)
      in
      let scope =
        match body_opt with
        | None -> GlobalVar
        | Some _ -> LocalVar
      in
      return (Let (scope, kind, name, value, body_opt))
    in
    (* top level: first let/if, then regular expressions *)
    choice [ let_expr; if_expr; cmp_level ])
;;

(* wrapper over angshtorm *)

let parse (s : string) : (expression, error) result =
  match parse_string ~consume:Consume.All (spaces *> expr <* spaces) s with
  | Ok e -> Ok e
  | Error msg -> Error (`Parsing_error msg)
;;

let pp_error fmt (`Parsing_error msg) = Format.fprintf fmt "Parse error: %s" msg